Δήμητρα Σπανού Χημικός, καθηγήτρια Β/θμιας Εκπ/σης στο 1ο Γυμνάσιο Δάφνης
σε επεξεργασία
ΤΑ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
Αν έχουμε δύο ή περισσότερα σώματα που μπορούν να ανταλλάσουν ενέργεια και ύλη μεταξύ τους αποτελούν ένα θερμοδυναμικό σύστημα ένα σύστημα. Στην κασσική Φυσικη, στην θερμοδυναμιή στην Χημεία και στην Βιοχημεία, ισχύει η διάκριση Κλειστό Σύστημα , Ανοικτό Σύστημα και Απομονωμένο Σύστημα
ΚΛΕΙΣΤΟ ΚΑΙ ΑΝΟΙΚΤΟ ΣΥΣΤΗΜΑ
Σε ενα κλειστό σύστημα η μεταβολή στην εσωτερική του ενέργεια οφείλεται στην θερμότητα που ανταλλάσει με το περιβάλλον (dQ) και το έργο που παράγεται ή καταναλώνεται dU = dQ +dW
(Σε ένα ανοικτό σύστημα η μεταβολή στην εσωτερική του ενέργεια εξαρτάται από το ποσό της θερμότητας που ανταλλάσσεται ανάμεσα στο σύστημα και το περιβάλλον (dQ), το έργο που εισρέει ή εκρέει στο σύστημα dW και την μεταβολή της εσωτερικής του ενέργειας λόγω της ροής της ύλης ( dUmatter).
dU = dQ + dW +dUmatter)
Α. ΚΛΕΙΣΤΟ ΣΥΣΤΗΜΑ
Στό Κλειστό Σύστημα δεν επιτρέπονται ορισμένοι τύποι μεταφοράς, που διαφέρουν ανάλογα το πεδίο που χρησιμοποιούνται.
Στην Κλασσική Φυσική ένα κλειστό σύστημα δεν ανταλλάσει ύλη με το περιβάλλον και δεν υπόκειται σε καμμία δύναμη εξωτερική ως προς το Σύστημα.
Στην Θερμοδυναμική ένα κλειστό σύστημα μπορεί να ανταλλάξει ενέργεια σαν έργο ή θερμότητα όχι όμως σαν ύλη
Στην Χημεία ένα Κλειστό Σύστημα ΄Κλειστό σύστημα είναι ένα σύστημα όπου κανένα από τα αντιδρώντα ή τα προιόντα δεν μπορεί να διαφύγει
Β. ΑΠΟΜΟΝΩΜΕΝΟ ΣΥΣΤΗΜΑ
Το Απομονωμένο Σύστημα δεν μπορεί να ανταλλάξει οποιανδήποτε μορφή ενέργειας ή ύλης ή έργο με το περιβάλλον
Γ. Το Ανοικτό Σύστημα Ανταλλάσει Ενέργεια με το περιβάλλον με την μορφή θερμότητας έργου ή ύλης
Από το πρώτο θερμδυναμικό αξίωμα έχουμε
Για απομονωμένα συστήματα Q=W=0 ισχύει ΔU = σταθερό
Για κλειστά συστήματα γενικά έχουμε ΔU = Q -W
Για κλειστά συστήματα και ισόχωρη μεταβολή ΔV=0 ισχύει ΔU = Q
Για κλειστά συστήματα και ισοβαρή μεταβολή P= σταθερή W= p ΔV και Δu, Q, W όχι μηδέ
Για κλειστά συστήματα και ισόθερμη μεταβολή Τ=σταθερή και επομένως ΔU=0 και Q=W
Για κλειστά συστήματα και αδιαβατική μεταβολή ισχύει Q=0 ισχύει ΔU=-W
ΕΚΤΑΤΙΚΕΣ ΚΑΙ ΕΝΤΑΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ
Η θερμοδυναμική εξετάζει τις θερμοδυναμικές ιδιότητες απλών συστημάτων ενός συστατικού μιας φάσης ή πολυπλοκότερων που αποτελούνται από πολλά υλικά ή ένα σε πολλές φάσεις.
Σε αυτά διακρίνουμε εκτατικές ιδιότητές τους που τις ονομάζουμε και προσθετικές (όπως η μάζα, η εντροπία, η ελεύθερη ενέργεια κ.α.) όπου Χ=ΣΧι
και τις εντατικές που η τιμή τους δεν εξαρτάται από το μέγεθος του Συστήματος όπως θερμοκρασία, πίεση, δείκτης διάθλασης κ.α.
ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ
Η ΑΝΑΓΚΗ ΝΑ ΒΑΛΟΥΜΕ ΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΘΕΡΜΟΔΥΝΑΜΙΚΗ)
ΜΑΖΙ ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΜΟ ΘΕΡΜΟΔΥΝΑΜΙΚΩΝ ΙΔΙΟΤΗΤΩΝ
Όπως είδαμε στο 2οΑ μέρος .."Τα μακροσκοπικά συστήματα, όταν είναι σε ισορροπία, καθορίζονται από τις θερμοδυναμικές μεταβλητές που είναι η θερμοκρασία, η πίεση, ο όγκος και η Χημική Σύνθεση . Για να ολοκληρωθεί όμως η εικόνα και να κατανοηθούν τα μακροσκοπικά μεγέθη και να ερμηνευτούν οι μακροσκοπικοί νόμοι πρέπει να γίνει ερμηνεία βάσει μκροσκοπικών δεδομένων και αιτιών. Αυτό καταφέρνει η Στατιστική Θερμοδυναμική και η Στατιστική Μηχανική, που περιγράφουν τις διεργασίες της θερμοδυναμικής μικροσκοπικά και επικεντρώνεται στα μικρά δομικά σωματίδια της ύλης και τις ιδιότητές τους όπως η κινητικότητα και θέση."
Η Επιστήμη της Στατιστικής ασχολείται α. με διαδικασία της συλλογής δεδομένων, β. με την παρουσίασή τους (περιγραφική Στατιστική) και γ. με την ανάλυσή τους και διεξαγωγή συμπερασμάτων
ΚΑΤΑΝΟΜΗ -ΣΥΝΑΡΤΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ
Ο Όρος Κατανομή είναι όρος που χρησιμοποιείται στην Στατιστική. Τόσο στην Περιγραφική Στατιστική (συνάρτηση κατανομής) για να αποδώσει την συχνότητα τιμών μεγεθών, όσο και την επαγωγική Στατιστική, για να δώσει την πιθανότητα μεμονωμένων τιμών των μεταβλητών (συνάρτηση Πυκνότητας)
Κατανομή ταχυτήτων σωματιδίων:Δεχόμενοι ότι το σύστημα μας περιέχει έναν πολύ μεγάλο αριθμό σωματιδίων που κινούνται στον τρισδιάστατο χώρο, το κλάσμα των σωματιδίων που βρίσκονται μέσα σε ένα απειροστό στοιχείο (διάστημα) του τρισδιάστατου χώρου των ταχυτήτων d3υ, με κέντρο ένα διάνυσμα f(υ)d3υ. Η συνάρτηση δίνεται με τη σχέση: m η μάζα κάθε σωματιδίου, k σταθερά του Boltzman T η θερμοκρασία
Η πιθανότερη ταχύτητα είναι η μέγιστη τιμή της f(υ)d3υ. Για να την βρούμε παραγωγίζουμε την συνάρτηση και την εξισώνουμε με το μηδέν. Βρίσκουμε:
. R η παγκόσμια σταθερά των αερίων, Τ η θερμοκρασία, Μ το μοριακό βάρος
Το μέσο μέτρο της ταχύτητας (μέση ταχύτητα) είναι η αναμενόμενη τιμή των μέτρων των ταχυτήτων και δίνεται από το ολοκλήρωμα
Το μικροκανονικό Σύνολο (ENV), το κανονικό Σύνολο (TNV) και το μεγαλοκανονικό σύνολο (ΤμV)
ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΟΜΟΓΕΝΗ Ή ΜΟΝΟΦΑΣΙΚΑ ΚΑΙ ΕΤΕΡΟΓΕΝΗ Ή ΠΟΛΥΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΠΗΓΕΣ
https://arxiv.org/abs/2110.11997
Κατανομή Μάξγουελ-Μπόλτσμαν - Βικιπαίδεια (wikipedia.org)
https://science.fandom.com/el/wiki/%CE%9A%CE%B1%CF%84%CE%B7%CE%B3%CE%BF%CF%81%CE%AF%CE%B1:%CE%A3%CF%84%CE%B1%CF%84%CE%B9%CF%83%CF%84%CE%B9%CE%BA%CE%AD%CF%82_%CE%9A%CE%B1%CF%84%CE%B1%CE%BD%CE%BF%CE%BC%CE%AD%CF%82
Akat;ergasto